Knowledge Partners 特許業務法人【名古屋の特許事務所】

Blog

特許実務と機械翻訳

Blog > 実務 > 特許実務と機械翻訳 ブログ村

 特許業界の皆さん、機械翻訳を使われたことはあるでしょうか?
 私自身は、少しずつ利用するケースが増えてきました。外国のクライアントへのメールを英語で書くときに、英語の文書がすぐに浮かばなければ、日本語で文を作成し、google 翻訳やBing 翻訳で翻訳します。このようなスタイルで機械翻訳を利用しているとその精度に驚かされます。ほぼ完璧、と感じます。google 翻訳では表示された文書の単語をダブルクリックすると単語の意味や例文が出てきて辞書的にも使えるため、徐々に手放せないサービスになりつつあります。

 特許業界に身を置いていると、やはり、機械翻訳が実務に利用できるのか気になります。そこで、機械翻訳を利用して、いくつか試してみました。この結果、
 自分の英語能力では、
 英語→日本語の翻訳については、自分で翻訳した方が速い。
 日本語→英語の翻訳については、機械翻訳を援用した方が速い。
となりました。

 英語→日本語については、以前から読もうと思っていた公報を利用して機械翻訳の質をみてみました。公報はUS 20170095925 A1です。これは、ディズニーによるベイマックス風のロボットの出願として一部で話題になっていた公報です。
 翻訳のスピードは極めて速く、大半(90%以上)は文章の大意を把握できるクオリティで翻訳できているので、機械学習導入以前の翻訳ソフトウェアに比べると、非常に高性能になったように思えます。特に、google 翻訳はどんどん意訳するようで、そのスキルには驚かされます。
 例えば、DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS を【発明を実施するための最良の形態】と訳します。大量の学習データに基づいて機械学習しているとはいえ、この翻訳には驚きました。逐語訳の世界ではあり得ない翻訳です。米国明細書と日本明細書の対応関係を機械学習できていると言うことなのでしょうか?あるいは人手でチューニングするのでしょうか?
 また、google 翻訳では請求項に含まれるtheを逐一前記に読み替えており、明細書の実施形態等に含まれるtheは無視されています。なんでしょうかこの特許業界のローカルルールまで熟知したような訳出は。このような翻訳が機械翻訳で実現されている現状には正直驚きました。

 しかし、、、、残念ながら実務には利用しにくいと感じました。
 まず、明細書の内容把握をする上で、5%でも意味の通らない部分があると文章をすらすらと読むことができず、意味不明の部分がでてくるたびに原文を確認する作業が必要になってしまいます。このようなことをするぐらいなら自分で読んだ方が速いと感じました。
 さらに機械翻訳では、同一文書内の同一文字列を異なる言葉に訳すケースがあるようです。これは長文読解の際に致命的なように思えます。同じ意味の概念を異なる言葉で表現するというのは、特許明細書では最も避けるべき初歩的なミスですし、特許業界以外でも訳文内の異なる単語は異なる意味と解釈されるのが普通のように思えます。このような訳はgoogle 翻訳とBing 翻訳の双方で散見されます(例えば、US 20170095925 A1の0011内のrigid support element)。機械翻訳では同一単語を同一訳として出力する制約を設けるのが難しいとか、特殊な事情があるのでしょうか。

 日本語→英語の訳は日常的に利用してまして、とても有用と感じます。主に、海外のクライアントへのメール(日本の特許制度や事務所料金等の問合せに対する返信等)を作成する際に利用します。これらの文書はそれほど長文ではないのですが、私の英語能力では、自分で一から英文を書くより、機械翻訳を使った方が何倍も速く文章を書き上げることができます。このような使い方において、機械翻訳はほとんどそのまま利用可能なクオリティと感じます。機械翻訳は、特許文書よりも日常会話的な文書の方が得意なのでしょうか。また、仮に修正が必要になったとしても修正作業は苦になりません。そもそも、日本語で文章を作成したとしても校正はしますので、このケースで英文に誤訳が5%程度含まれていたとしてもさほど作業量は増えません。

 いずれにしても、この分野の技術革新のスピードは極めて速く、上述のようなローカルルールへの対応も実現できているため、英語→日本語の翻訳において私が感じている問題は近々解消するかもしれません。機械翻訳のレベルがもう一段上がったら、特許事務所内のクローズド環境で明細書を機械翻訳をすることで翻訳支援をする実務も可能になるかもしれませんので、定期的にチェックしていこうと思います。


ブログ村